An Investigation into the Relation between Wheel/rail Contact and Bolt Tightness of Rail Joints Using a Dynamic Finite Element Model
نویسندگان
چکیده
Rail joints have a shorter service life than most other railway track components. The discontinuity between rail ends turns the rail joint into a weak spot, and consequently, into a track component demanding more frequent maintenance measures, which result in high maintenance costs. Moreover, difficulties are often found when assessing the damage condition of rail joints since damage conditions like cracks in the rail web or loose bolts cannot be detected by visual inspection. A better understanding of the damage mechanisms and degradation process of rail joints may help to develop adapted maintenance measures and to improve rail joint design. In this paper, a 3D Finite Element model is presented as base for rail joint study. The model represents accurately the main components (rail, sleeper, joint bars and wheel) and the interaction between them (contact). The model is validated between 150 and 800 Hz with measured axle box accelerations of resilient wheels. Higher frequencies may be reached with an improved model of the rubber. In the paper, the influence of the bolt tightness is studied. The results showed that contact force, specially its variation, is strongly affected by the bolt tightness; loose bolts cause higher contact forces. The effect of vehicle speed on wheel/rail contact is also significant mainly due to the interaction between rail and sleepers in the vicinity of the rail joint. Apart from bolt tightness conditions and vehicle speed, the validated model has the potential to study the influence of other track parameters and damage conditions.
منابع مشابه
Preliminary results on multi-body dynamic simulation of a new test rig for wheel-rail contact
The ability to perform rolling contact fatigue (RCF) experiments in wheel–rail material is provided by a new small–scale test rig, manifesting the actual dynamic behaviour of the railway system. In this paper, a multi-body dynamics (MBD) model is proposed, simulating the vibration behaviour of the prescribed rig. The new testing facility is modelled using a three-dimensional model of the vehicl...
متن کاملPARAMETRIC STUDY ON RAILWAY FASTENING SYSTEM RESPONSE SUBJECTED TO DIFFERENT AXLE LOAD
There are several factors causing fastening systems to deteriorate faster than the designed life. The high repetitive loads from a moving train being one of the main factors, track irregularities, design and installation defects of track components, non-uniform rail support stiffness, unevenness in the rail seat deterioration are some of the factors causing fastenings systems to deteriorate fas...
متن کاملNumerical Investigation of Rail Bending Behaviour Focusing on the Effect of Track Modulus
Thorough understanding of steel rail response to wheel load is a key step towards design and evaluation of the railway track structure. In current practice, maximum vertical deflection and bending moment are calculated using the theory of infinite beam on continuous elastic foundation (Winkler model), in which the foundation stiffness is assumed as constant. However, variation of track modulus ...
متن کاملPreliminary results on dynamic analysis of a new test rig for wheel-rail contact studies
A new reduced–scale test rig is developed owing to significantly contribute to the applicability of the laboratory tests on rolling contact fatigue (RCF) in wheel-rail material. This paper introduces the dynamic analysis of the test rig, in order to assess the vibration behaviour of the system with respect to contact phenomenon. Finite element modelling (FEM) is used to simulate the mecha...
متن کاملDynamic Response of the Coupled Vehicle-Floating Slab Track System using Finite Element Method
In present study, a mathematical model of the vehicle–floating slab track (FST) interaction is established to investigate the coupled behaviour of vehicle–track system. The FST is modelled as the double Euler -Bernoulli beam including the rail and slab. The railway vehicle is simplified as a multi-rigid-body model. The wheel–rail interface is treated using a nonlinear Hertzian contact model, co...
متن کامل